6 mph, 2 hours what is the distance
6 mph, 2 hours what is the distance Distance = Rate * Time Distance = 6 mph * 2 hours Distance = [B]12 miles [/B] You can also use our [URL=' calculator[/URL]
A cab charges $5 for the ride plus $1.25 per mile. How much will a 53 mile trip cost?
A cab charges $5 for the ride plus $1.25 per mile. How much will a 53 mile trip cost? We set up our cost function C(m) where m is the number of miles: C(m) = 1.25m + 5 The problem asks for C(53): C(53) = 1.25(53) + 5 C(53) = 66.25 + 5 C(53) = [B]$71.25[/B]
A cab company charges $5 per cab ride, plus an additional $1 per mile driven , How long is a cab rid
A cab company charges $5 per cab ride, plus an additional $1 per mile driven , How long is a cab ride that costs $13? Let the number of miles driven be m. Our cost function C(m) is: C(m) = Cost per mile * m + cab cost C(m) = 1m + 5 The problem asks for m when C(m) = 13: 1m + 5 = 13 To solve this equation for m, [URL=' type it in our search engine[/URL] and we get: m = [B]8[/B]
A cab company charges $5 per cab ride, plus an additional $3 per mile driven. How long is a cab ride
A cab company charges $5 per cab ride, plus an additional $3 per mile driven. How long is a cab ride that costs $17? Let m be the number of miles driven. We setup the cost equation C(m): C(m) = Cost per mile driven * miles driven + ride cost C(m) = 3m + 5 The questions asks for m when C(m) is 17: 3m + 5 = 17 To solve this equation for m, we [URL=' it in our search engine[/URL] and we get: m = [B]4[/B]
A car rents $35 per day plus 15 cents per mile driven
A car rents $35 per day plus 15 cents per mile driven Set up the cost function C(m) where m is the number of miles driven: C(m) = Cost per mile * m + Daily Fee [B]C(m) = 0.15m + 35[/B]
A certain race is a distance of 26 furlongs. How far is the race in (a) miles? (b) yards?
A certain race is a distance of 26 furlongs. How far is the race in (a) miles? (b) yards? [URL=' type in [I]26 furlongs[/I] into our search engine[/URL] and we get: [LIST] [*][B]3.25 miles[/B] [*][B]5,720 yards[/B] [/LIST]
A cheetah can run 68 mph. How fast is a cheetah in feet per second
A cheetah can run 68 mph. How fast is a cheetah in feet per second (68 miles / hour) * (1 hour / 3600 seconds) * (5280 feet / 1 mile) = 68 * 5280 feet per 3600 seconds 395040 feet / 3600 seconds [B]99.73 feet per second[/B]
A family is taking a cross-country trip of 3000 miles by car. They are bringing two spare tires with
A family is taking a cross-country trip of 3000 miles by car. They are bringing two spare tires with them and want all six tires to go an equal distance. How many miles will each tire go? 3000 * 4 tires = 12,000 miles traveled 12,000 / 6 tires = [B]2,000 miles[/B]
A goal for many elite runners is to complete a mile in 4 minutes. At what speed (in miles per hour)
A goal for many elite runners is to complete a mile in 4 minutes. At what speed (in miles per hour) is a runner traveling when he completes a mile in 4 minutes? 4 minutes/60 minutes per hour = 1 mile / n miles 4/60 = 1/15, so n = [B]15 miles per hour[/B]
A jet plane traveling at 550 mph over takes a propeller plane traveling at 150 mph that had a 3 hour
A jet plane traveling at 550 mph over takes a propeller plane traveling at 150 mph that had a 3 hours head start. How far from the starting point are the planes? Use the formula D = rt where [LIST] [*]D = distance [*]r = rate [*]t = time [/LIST] The plan traveling 150 mph for 3 hours: Time 1 = 150 Time 2 = 300 Time 3 = 450 Now at Time 3, the other plane starts Time 4 = 600 Time 5 = 750 Time 6 = 450 + 150t = 550t Subtract 150t 400t = 450 Divide each side by 400 t = 1.125 Plug this into either distance equation, and we get: 550(1.125) = [B]618.75 miles[/B]
A jet travels at 485 miles per hour. Which equation represents the distance, d, that the jet will tr
A jet travels at 485 miles per hour. Which equation represents the distance, d, that the jet will travel in t hours. The distance formula is: d = rt We're given r = 485, so we have: [B]d = 485t[/B]
A passenger train left station A at 6:00 P.M. Moving with the average speed 45 mph, it arrived at st
A passenger train left station A at 6:00 P.M. Moving with the average speed 45 mph, it arrived at station B at 10:00 p.m. A transit train left from station A 1 hour later than the passenger train, but it arrived at the station B at the same time with the passenger train. What was the average speed of the transit train? [U]Passenger Train[/U] [LIST] [*]45 miles per hour and it got there in 4 hours. [/LIST] Using our formula D = rt where: [LIST] [*]D = Distance [*]r = rate [*]t = time [/LIST] [LIST] [*]D = rt [*]D = 45(4) [*]D = 180 miles from Station A to Station B [/LIST] Transit Train [LIST] [*]It has to go the same distance, 180 miles, so D = 180 [*]It made it there in 3 hours. This is r [*]We want to solve for t [/LIST] D = rt 180 = 3r Divide each side by 3 [B]r = 60 miles per hour[/B]
A rental truck costs $49.95+$0.59 per mile and another costs $39.95 plus $0.99, set up an equation t
A rental truck costs $49.95+$0.59 per mile and another costs $39.95 plus $0.99, set up an equation to determine the break even point? Set up the cost functions for Rental Truck 1 (R1) and Rental Truck 2 (R2) where m is the number of miles R1(m) = 0.59m + 49.95 R2(m) = 0.99m + 39.95 Break even is when we set the cost functions equal to one another: 0.59m + 49.95 = 0.99m + 39.95 [URL=' this equation into the search engine[/URL], we get [B]m = 25[/B].
A road construction team built a 114 mile road over a period of 19 months what was their average bui
A road construction team built a 114 mile road over a period of 19 months what was their average building distance per a month Average building distance = miles built / months of building Average building distance = 114/19 Average building distance = [B]6 miles per month[/B]
A service charges a $1.95 flat rate plus $0.05 per mile . Jason only has $12 to spend on a a ride
A service charges a $1.95 flat rate plus $0.05 per mile. Jason only has $12 to spend on a a ride. Set up the cost equation C(m) where m is the number of miles: C(m) = 0.05m + 1.95 The problems asks for the number of miles (m) when C(m) = 12: 0.05m + 1.95 = 12 [URL=' this equation into our search engine[/URL], we get: m = [B]201[/B]
A ship is traveling at an average velocity of 28 miles per hour. How far will the ship travel in two
A ship is traveling at an average velocity of 28 miles per hour. How far will the ship travel in two days? 28 miles/1 hour * 24 hours/1 day * 2 days 28 * 24 * 2 = [B]1,344 miles[/B]
A student was trying to determine a formula for changing speeds that are written in feet per second
A student was trying to determine a formula for changing speeds that are written in feet per second into miles per hour. If a sprinter runs at a speed of n feet per second, what is her speed in miles per hour? 3600 seconds per hour = 3600n feet per hour 5280 feet per mile so we have: 3600n feet per hour / 5280 feet per mile = [B]0.6818n feet per second[/B]
A tank used 22 gallons of gas to go 17.6 miles. How many miles per gallon did the tank use?
A tank used 22 gallons of gas to go 17.6 miles. How many miles per gallon did the tank use? 17.6 miles / 22 gallons = [B]0.8 miles per gallon[/B]
A taxi cab in Chicago charges $3 per mile and $1 for every person. If the taxi cab ride for two peop
A taxi cab in Chicago charges $3 per mile and $1 for every person. If the taxi cab ride for two people costs $20. How far did the taxi cab travel. Set up a cost function C(m) where m is the number of miles driven: C(m) = cost per mile * m + per person fee [U]Calculate per person fee:[/U] per person fee = $1 per person * 2 people per person fee = $2 [U]With a cost per mile of $3 and per person fee of $2, we have:[/U] C(m) = cost per mile * m + per person fee C(m) = 3m + 2 The problem asks for m when C(m) = 20, so we set 3m + 2 equal to 20: 3m + 2 = 20 To solve this equation for m, we [URL=' it in our search engine[/URL] and we get: m = [B]6[/B]
A taxi cab in nyc charges a pick up fee of $5.00 . The customer must also pay $2.59 for each mile th
A taxi cab in nyc charges a pick up fee of $5.00 . The customer must also pay $2.59 for each mile that the taxi must drive to reach their destination. Write an equation Set up a cost function C(m) where m is the number of miles: C(m) = Mileage Charge * m + pick up fee [B]C(m) = 2.59m + 5[/B]
A taxi charges a flat rate of $1.50 with an additional charge of $0.80 per mile. Samantha wants to s
A taxi charges a flat rate of $1.50 with an additional charge of $0.80 per mile. Samantha wants to spend less than $12 on a ride. Which inequality can be used to find the distance Samantha can travel? Set up the travel cost equation where m is the number of miles: C(m) = 0.8m + 1.50 If Samantha wants to spend less than 12 per ride, we have an inequality where C(m) < 12: [B]0.8m + 1.50 < 12[/B]
A taxi charges a flat rate of $1.50 with an additional charge of $0.80 per mile. Samantha wants to s
A taxi charges a flat rate of $1.50 with an additional charge of $0.80 per mile. Samantha wants to spend less than $12 on a ride. Which inequality can be used to find the distance Samantha can travel? [LIST] [*]Each ride will cost 1.50 + 0.8x where x is the number of miles per trip. [*]This expression must be less than 12. [/LIST] [U]Setup the inequality:[/U] 1.5 + 0.8x < 12 [U]Subtracting 1.5 from each side of the inequality[/U] 0.8x < 10.5 [U]Simplifying even more by dividing each side of the inequality by 0.8, we have:[/U] [B]x < 13.125[/B]
A taxi charges a flat rate of $1.75, plus an additional $0.65 per mile. If Erica has at most $10 to
A taxi charges a flat rate of $1.75, plus an additional $0.65 per mile. If Erica has at most $10 to spend on the cab ride, how far could she travel? Set up a cost function C(m), where m is the number of miles: C(m) = Cost per mile * m + flat rate C(m) = 0.65m + 1.75 The problem asks for m when C(m) = 10 0.65m + 1.75 = 10 [URL=' this equation into the search engine[/URL], we get: m = [B]12.692 miles[/B]
A taxi charges a flat rate of $1.75, plus an additional $0.65 per mile. If Erica has at most 10$ to
A taxi charges a flat rate of $1.75, plus an additional $0.65 per mile. If Erica has at most 10$ to spend on the cab ride, how far could she travel Set up a cost function C(m), where m is the number of miles Erica can travel. We have: C(m) = 0.65m + 1.75 If C(m) = 10, we have: 0.65m + 1.75 = 10 [URL=' this equation into our search engine[/URL], we get: m = 12.69 miles If the problem asks for complete miles, we round down to 12 miles.
A taxi charges a flat rate of $1.75, plus an additional $0.65 per mile. If Erica has at most 10$ to
A taxi charges a flat rate of $1.75, plus an additional $0.65 per mile. If Erica has at most 10$ to spend on the cab ride, how far could she travel? Set up the cost function C(m) where m is the number of miles: C(m) = 0.65m + 1.75 If Erica has $10, then C(m) = 10, so we have: 0.65m + 1.75 = 10 [URL=' this equation into the search engine[/URL], we get m = 12.69 if the answer asks for whole number, then we round down to m = 12
A taxi charges a flat rate of 1.75, plus an additional 0.65 per mile. If Erica has at most 10 to spe
A taxi charges a flat rate of 1.75, plus an additional 0.65 per mile. If Erica has at most 10 to spend on the cab ride, how far could she travel? Setup an equation where x is the number of miles traveled: 0.65x + 1.75 = 10 Subtract 1.75 from each side: 0.65x = 8.25 Divide each side by 0.65 [B]x = 12.69 miles[/B] If we do full miles, we round down to 12. [MEDIA=youtube]mFqUe2mjX-w[/MEDIA]
A taxi service charges an initial fee of $3 plus $1.80 per mile. How far can you travel for $12?
A taxi service charges an initial fee of $3 plus $1.80 per mile. How far can you travel for $12? Given m for miles, we have the equation: 1.80m + 3 = 12 We [URL=' this equation into our search engine[/URL] to solve for m and we get: m = [B]5[/B]
A tow truck charges a service fee of $50 and an additional fee of $1.75 per mile. What distance was
A tow truck charges a service fee of $50 and an additional fee of $1.75 per mile. What distance was Marcos car towed if he received a bill for $71 Set up a cost equation C(m) where m is the number of miles: C(m) = Cost per mile * m + Service Fee Plugging in the service fee of 50 and cost per mile of 1.75, we get: C(m) = 1.75m + 50 The question asks for what m is C(m) = 71. So we set C(m) = 71 and solve for m: 1.75m + 50 = 71 Solve for [I]m[/I] in the equation 1.75m + 50 = 71 [SIZE=5][B]Step 1: Group constants:[/B][/SIZE] We need to group our constants 50 and 71. To do that, we subtract 50 from both sides 1.75m + 50 - 50 = 71 - 50 [SIZE=5][B]Step 2: Cancel 50 on the left side:[/B][/SIZE] 1.75m = 21 [SIZE=5][B]Step 3: Divide each side of the equation by 1.75[/B][/SIZE] 1.75m/1.75 = 21/1.75 m = [B]12[/B]
A train traveled at 66km an hour for four hours. Find the distance traveled
A train traveled at 66km an hour for four hours. Find the distance traveled Distance = Rate * Time Distance = 66km/hr * 4 hours Distance = [B]264 miles[/B]
A truck driver took 7 hours and 45 minutes to travel 426.25 miles. What was the average speed of the
A truck driver took 7 hours and 45 minutes to travel 426.25 miles. What was the average speed of the truck driver? 45/60 = 0.75 of an hour 7 hours and 45 minutes = 7.75 hours 426.25 miles / 7.75 hours miles = [B]55 miles per hour[/B]
A woman walked for 5 hours, first along a level road, then up a hill, and then she turned around and
A woman walked for 5 hours, first along a level road, then up a hill, and then she turned around and walked back to the starting point along the same path. She walks 4mph on level ground, 3 mph uphill, and 6 mph downhill. Find the distance she walked. Hint: Think about d = rt, which means that t = d/r. Think about each section of her walk, what is the distance and the rate. You know that the total time is 5 hours, so you know the sum of the times from each section must be 5. Let Level distance = L and hill distance = H. Add the times it took for each section of the walk: L/4 + H /3 + H/6 + L/4 = 5 The LCD of this is 12 from our [URL=' Calculator[/URL] [U]Multiply each side through by our LCD of 12[/U] 3L + 4H + 2H + 3L = 60 [U]Combine like terms:[/U] 6L + 6H = 60 [U]Divide each side by 3:[/U] 2L + 2H = 20 The woman walked [B]20 miles[/B]
Adam drove the 10 miles to school at a speed of 60 mph. On his way home, due to traffic, his speed w
Adam drove the 10 miles to school at a speed of 60 mph. On his way home, due to traffic, his speed was 30 mph. What was his average speed for the round trip to school and back? D = rt To school: 60 miles in 60 minutes = 10 miles in 10 minutes To home: 30 miles in 60 minutes = 10 miles in 20 minutes Total time: 10 + 20 = 30 minutes or 0.5 hours With a speed of s, we have: d = st 20 = 0.5s Divide each side by 2: s = [B]40 mph[/B]
An airplane flies at 250 mph. How far will it travel in 5 h at that rate of speed?
An airplane flies at 250 mph. How far will it travel in 5 h at that rate of speed? Distance = Rate x Time Distance = 250mph x 5h Distance = [B]1,250 miles[/B]
Ann took a taxi home from the airport. The taxi fare was $2.10 per mile, and she gave the driver a t
Ann took a taxi home from the airport. The taxi fare was $2.10 per mile, and she gave the driver a tip of $5 Ann paid a total of $49.10. Set up the cost function C(m) where m is the number of miles: C(m) = Mileage Rate x m + Tip 2.10m + 5 = 49.10 [URL=' 2.10m + 5 = 49.10 into the search engine[/URL], and we get [B]m = 21[/B].
Bashar just read that many more car accidents occur within 30 miles of one's home. He decided that h
Bashar just read that many more car accidents occur within 30 miles of one's home. He decided that he would wear his seat belt only when he is driving within 30 miles from his home and not on long trips because it is obviously safer to travel when you are more than 30 miles from your home. Explain why Bashar's logic is flawed. [B]More accidents occur within 30 miles of one's home because that is where a majority of the travel takes place.[/B]
Bills car rental charges a base fee of 50$ and then $0.20 per mile
Bills car rental charges a base fee of 50$ and then $0.20 per mile. Set up the cost function C(m) where m is the number of miles driven: [B]C(m) = 50 + 0.20m[/B]
Company a charges $25 plus $0.10 a mile. Company b charges $20 plus $0.15 per mile. How far would yo
Company a charges $25 plus $0.10 a mile. Company b charges $20 plus $0.15 per mile. How far would you need to travel to get each charge to be the same? Let x be the number of miles traveled Company A charge: C = 25 + 0.10x Company B charge: C = 20 + 0.15x Set up an equation find out when the charges are the same. 25 + 0.10x = 20 + 0.15x Combine terms and simplify 0.05x = 5 Divide each side of the equation by 0.05 to isolate x x = [B]100[/B]
Danna walked along a road. Starting from her house she walked 14 meters due south then walked 8 mete
Danna walked along a road. Starting from her house she walked 14 meters due south then walked 8 meters due north and finally walked 20 meters due south. how far away was Danna from her hours 14 - 8 + 20 = [B]26 miles due south[/B]
Dennis was getting in shape for a marathon. The first day of the week he ran n miles. Dennis then ad
Dennis was getting in shape for a marathon. The first day of the week he ran n miles. Dennis then added a mile to his run each day. By the end of the week (7 days), he had run a total of 70 miles. How many miles did Dennis run the first day? Setup distance ran for the 7 days: [LIST=1] [*]n [*]n + 1 [*]n + 2 [*]n + 3 [*]n + 4 [*]n + 5 [*]n + 6 [/LIST] Add them all up: 7n + 21 = 70 Solve for [I]n[/I] in the equation 7n + 21 = 70 [SIZE=5][B]Step 1: Group constants:[/B][/SIZE] We need to group our constants 21 and 70. To do that, we subtract 21 from both sides 7n + 21 - 21 = 70 - 21 [SIZE=5][B]Step 2: Cancel 21 on the left side:[/B][/SIZE] 7n = 49 [SIZE=5][B]Step 3: Divide each side of the equation by 7[/B][/SIZE] 7n/7 = 49/7 n =[B] 7 [URL='
Determine a conversion ratio that could be used to convert miles to inches
Determine a conversion ratio that could be used to convert miles to inches. We know that 1 mile equals 5,280 feet. We know that 1 foot equals 12 inches. So 1 miles = 5,280 feet * 12 inches per foot= [B]63,360 inches[/B]
Each unit on a map of a forest represents 1 mile. To the nearest tenth of a mile, what is the distan
Each unit on a map of a forest represents 1 mile. To the nearest tenth of a mile, what is the distance from a ranger station at (1, 2) on the map to a river crossing at (2, 4) ? We use our 2 point calculator and we get a distance of 2.2361. Since each unit represents 1 mile, we have: 2.2361 units * 1 mile per unit = [B]2.2361 miles[/B]
Eric is taking a trip of 245 miles. If he has traveled x miles, represent the remainder of the trip
Eric is taking a trip of 245 miles. If he has traveled x miles, represent the remainder of the trip in terms of x. Remaining distance = [B]245 - x[/B]
Frequency and Wavelength and Photon Energy
Free Frequency and Wavelength and Photon Energy Calculator - Provides the following 3 items using the speed of light and Plancks constant (h):- Given a frequency of centimeters, feet, meters, or miles the calculator will determine wavelength in Hz, KHz, MHz, GHz- Given a wavelength of Hz, KHz, MHz, GHz, the calculator will determine frequency in centimeters, feet, meters, or miles- Calculates photon energy
Gas Mileage
Free Gas Mileage Calculator - Given miles driven and gallons of gas, this calculates your gas (fuel) mileage.
Gigis family left their house and drove 14 miles south to a gas station and then 48 miles east to a
Gigis family left their house and drove 14 miles south to a gas station and then 48 miles east to a water park. How much shorter would their trip to the water park have been if they hadnt stopped at the gas station and had driven along the diagonal path instead? [IMG] Using our [URL=' theorem calculator[/URL], we see the diagonal route would be: 50 miles The original trip distance was: Original Trip Distance = 14 + 48 Original Trip Distance = 62 miles Diagonal Trip was 50 miles, so the difference is: Difference = Original Trip Distance - Diagonal Distance Difference = 62 - 50 Difference = [B]12 miles[/B]
gretchen cycles 65 miles in one week. Find her rate of cycling in miles per day
gretchen cycles 65 miles in one week. Find her rate of cycling in miles per day 65 miles per week / 7 days per week = [B]9.29 miles per day[/B]
Hans rented a truck for one day. There was a base fee of 16.95, and there was an additional charge o
Hans rented a truck for one day. There was a base fee of 16.95, and there was an additional charge of 76 cents for each mile driven. Hans had to pay 152.99 when he returned the truck. For how many miles did he drive the truck? Set up the equation where x is the amount of miles he drove: 0.76x + 16.95 = 152.99 [URL=' this equation into our calculator[/URL]: x = 179 miles
If .75 inches on a map are equal to 6 miles, how many miles is one inch equal to?
If .75 inches on a map are equal to 6 miles, how many miles is one inch equal to? Using the unit measurement, we have: 6 miles / 0.75 inches = [B]8 miles per inch[/B]
If 3.75 inches on a map are equal to 18.75 miles, how many miles are 5 inches equal to?
If 3.75 inches on a map are equal to 18.75 miles, how many miles are 5 inches equal to? Set up a proportion of inches to miles where m is the number of miles for 5 inches: 3.75/18.75 = 5/m Using our [URL=' calculator,[/URL] we get: m = [B]25 miles[/B]
If a car is traveling 40 mph, how far will it go in 5 hours?
If a car is traveling 40 mph, how far will it go in 5 hours? 40 miles / hour * 5 hours = [B]200 miles[/B]
If a car is traveling at a speed of 60 miles per hour, how many hours will it take for the car to tr
If a car is traveling at a speed of 60 miles per hour, how many hours will it take for the car to travel n miles? n miles / 60 miles per hour = [B]n/60 hours[/B]
If a speedometer indicates that a car is traveling at 65 kilometers per hour, how fast is the car tr
If a speedometer indicates that a car is traveling at 65 kilometers per hour, how fast is the car traveling in miles per hour? (Round to the nearest tenth.) Set up a proportion of miles per kilometers: 0.621/1 = n/65 Using our [URL=' calculator,[/URL] we get: n = [B]40.365[/B]
if a train travels at 80 mph for 15 mins, what is the distance traveled?
if a train travels at 80 mph for 15 mins, what is the distance traveled? Let d = distance, r = rate, and t = time, we have the distance equation: D = rt Plugging in our values for r and t, we have: D = 80mph * 15 min Remember our speed is in miles per hour, so 15 min equal 1/4 of an hour D = 80mph * 1/4 D = [B]20 miles[/B]
If sound travels 1/5 of a mile in one second, how many miles does it travel in 1/5 of a second?
If sound travels 1/5 of a mile in one second, how many miles does it travel in 1/5 of a second? 1/5 mile / second * 1/5 second = [B]1/25 of a mile[/B]
If you are running 6 miles per hour, then it takes you 10 minutes to run 1 mile. If you are running
If you are running 6 miles per hour, then it takes you 10 minutes to run 1 mile. If you are running 8 miles per hour, it takes you 7.5 minutes to run a mile. What does your speed have to be for your speed in miles per hour to be equal to your mile time in minutes? From above, we have: [LIST] [*]6mph x 10 minutes = 1 mile [*]8mph x 7.5 minutes = 1 mile [/LIST] Notice that mph x minutes = 60 since there are 60 minutes in 1 hour? So we have x mph x y minutes = 60. Since we want mph and y (minutes) = x (mph), we have x^2 = 60 x = sqrt(60) [B]x = 7.746 mph[/B]
If you take a Uber and they charge $5 just to show up and $1.57 per mile, how much will it cost you
If you take a Uber and they charge $5 just to show up and $1.57 per mile, how much will it cost you to go 12 miles? (Assume no tip.) a. Create an equation from the information above. b. Identify the slope in the equation? c. Calculate the total cost of the ride? 2. With the same charges as #1, how many miles could you go with $50, if you also gave a $7.50 tip? (Challenge Question! Hint, you only have a $50, exactly, with you a. Cost Equation C(m) for m miles is as follows: [B]C(m) = 1.57m + 5 [/B] b. Slope of the equation is the coefficient for m, which is [B]1.57 [/B] c. Total cost of the ride for m = 12 miles is: C(12) = 1.57(12) + 5 C(12) = 18.84 + 5 C(12) = [B]23.84 [/B] d. If you give a 7.50 tip, we subtract the tip from the $50 to start with a reduced amount: 50 - 7.50 = 42.50 So C(m) = 42.50 1.57m + 5 = 42.50 To solve this equation for m, we [URL=' it in our search engine[/URL] and we get: m = 23.89 Since we deal in full miles, we round our answer down to m = [B]23[/B]
In the year 1999, Hicham El Guerrouj of Morocco set a new world record when he ran a mile in 3 minut
In the year 1999, Hicham El Guerrouj of Morocco set a new world record when he ran a mile in 3 minutes 43.13 seconds. What was his speed in miles per hour? (Round your answer to the nearest hundredth.) 3 minutes = 60 seconds per minute = 180 seconds 180 seconds + 43.13 seconds = 223.13 seconds 223.13 seconds/3600 seconds per hour = 1 mile/n miles Cross multiply: 223.13n = 3600 Using our [URL=' solver[/URL], we get: n = [B]16.13 miles per hour[/B]
It takes 3 city snowplows 14 hours to clear 500 miles of road. If the city wants the 500 miles of ro
It takes 3 city snowplows 14 hours to clear 500 miles of road. If the city wants the 500 miles of road to be cleared in 6 hours, how many additional snowplows must they buy? Set up unit rate per plow: 14 hours * 3 plows = 42 hours for one plow to clear 500 miles of road Calculate the amount of plows we need: 42 hours / 6 hours = 7 plows Additional plows = New plows - original plows: Additional plows = 7 - 3 Additional plows = [B]4[/B]
Jason is 9 miles ahead of Joe running at 5.5 miles per hour and Joe is running at the speed of 7 mil
[SIZE=6]Jason is 9 miles ahead of Joe running at 5.5 miles per hour and Joe is running at the speed of 7 miles per hour. How long does it take Joe to catch Jason? A. 3 hours B. 4 hours C. 6 hours D. 8 hours Distance formula is d = rt Jason's formula (Add 9 since he's ahead 9 miles): d = 5.5t + 9 Joe's formula: d = 7t Set both distance formulas equal to each other: 5.5t + 9 = 7t Subtract 5.5t from each side: 5.5t - 5.5t + 9 = 7t - 5.5t 1.5t = 9 Divide each side by 1.5: 1.5t/1.5 = 9/1.5 t = [B]6 hours[/B] [U]Check our work with t = 6[/U] Joe = 7(6) = 42 Jason = 5.5(6) + 9= 33 + 9 = 42 [MEDIA=youtube]qae3WCq9wzM[/MEDIA] [/SIZE]
Kathy rans 16 miles a week. If she continues to ran at this rate how many miles will she ran in a ye
Kathy rans 16 miles a week. If she continues to ran at this rate how many miles will she ran in a year? 52 weeks / year * 16 miles / week = [B]832 miles /year[/B]
Kevin ran 4 miles more than Steve ran. The sum of their distances is 26 miles. How far did Steve run
Kevin ran 4 miles more than Steve ran. The sum of their distances is 26 miles. How far did Steve run? The domain of the solution is: Let k be Kevin's miles ran Let s be Steve's miles ran We have 2 given equtaions: [LIST=1] [*]k = s + 4 [*]k + s = 26 [/LIST] Substitute (1) into (2) (s + 4) + s = 26 2s + 4 = 26 Plug this into our [URL=' calculator[/URL] and we get s = 11
Kyle can walk mile in of an hour. What is Kyles speed in miles per hour?
Kyle can walk mile in of an hour. What is Kyles speed in miles per hour? We write this in terms of miles per hour as: 1/2 / 1/4 We want 1 for the denominator to represent an hour, so we multiply top and bottom of the fraction by 4: 4/2 / 4/4 2 / 1 [B]2 miles per hour[/B]
last week, bill drove 252 miles. This week, he drove m miles. Using m , write an expression for the
last week, bill drove 252 miles. This week, he drove m miles. Using m, write an expression for the total number of miles he drove in the two weeks We add the distance driven: [B]252 + m[/B]
Last year, Greg biked 524 miles. This year, he biked m miles. Using m , write an expression for the
Last year, Greg biked 524 miles. This year, he biked m miles. Using m , write an expression for the total number of miles he biked. We add both years to get our algebraic expression of miles biked: [B]m + 524[/B]
Last year, Maria biked M miles. This year, she biked 390 miles. Using m , write an expression for th
Last year, Maria biked M miles. This year, she biked 390 miles. Using m , write an expression for the total number of miles she biked. [U]Calculate Total miles biked[/U] Total miles biked = Last Year + This year Total miles biked = [B]m + 390[/B]
Linear Conversions
Free Linear Conversions Calculator - Converts to and from the following linear measurements for a given quantity: Inches Feet Yards Miles Micrometer Millimeters Centimeters Meters Kilometers Furlongs
Luke drove for n hours at 55 miles per hour. Luke's mother drove for n hours at a speed of 60 miles
Luke drove for n hours at 55 miles per hour. Luke's mother drove for n hours at a speed of 60 miles per hour. How much farther than Luke did his mother drive? Distance = Rate * Time [LIST] [*]Luke drove: 55n [*]Mom drove 60n [/LIST] Distance difference = 60n - 55n = [B]5n[/B]
Maria leaves her house and runs west for 6 m miles. She then turns North and runs 5 miles. Maria the
Maria leaves her house and runs west for 6 miles. She then turns North and runs 5 miles. Maria then travels east for 7 miles and then south for 5 miles. How far is Maria from her house now? Maria traveled the same distance north and south of 5 miles. These cancel each other out. Her 7 mile eastern trip compared to the 6 mile west trip represents a net difference of [B]1 mile[/B]
Math Written Assignment
Im sorta confused about this question? He has decided to remove all the old sod (grass), bring in a new 4 inch layer of topsoil, install new in-ground sprinklers, and reseed the lawn. He seems to think that he'll be able to save money by hauling loads of topsoil from the store himself in his pickup truck, rather than paying for delivery, but I don't think he's right. You're going to help us settle this. Here is (most of) the information you asked for: [LIST] [*]Is he redoing the whole yard or just the front? He's redoing the whole yard [*]How much topsoil does he need? I'm not sure, you'll have to figure that out. Remember he's putting a new 4 inch layer down over all the area currently covered by grass in the overhead picture above. [*]How big is the yard? I'm not sure, but you can probably estimate it using the overhead picture. [*]What kind of pickup truck does he drive? A 2003 Ford F-150 XL. [*]How much can the pickup carry? The truck bed is 80 inches long, 69 inches wide, and 20 inches tall. [*]How much is the delivery charge? $30 per truckload on top of the soil cost. Each truckload can deliver up to 18 cubic yards. [*]How much does the topsoil cost? $18 per cubic yard (sold in 1/4 yard increments). [*]How far is the soil store? It is 9 miles away. It takes about 20 minutes to drive there. [*]What gas mileage does the pickup truck get? It averages 17 miles to the gallon. [*]What is the current gas cost? Assume it's $3.79/gallon. [/LIST] Using this information, figure out whether my neighbor will save money by picking up the soil himself. Use the results of your calculations to guide your decision: would you recommend that my neighbor pick up the soil himself, or pay for delivery? Detail all your assumptions and calculations, and clearly write out your final conclusions.
Math Written Assignment
The truck bed is 80 inches long, 69 inches wide, and 20 inches tall. So the total volume the truck can carry is: 80 x 69 x 20 = 110,400 cubic inches can be carried each time. Find out how many gallons in a full tank for the 2003 Ford F150. Then you calculate the amount of miles you can drive on a full trip.
Nancy's car gets n miles per gallon of gas. If she travels x miles, how many gallons of gas did she
Nancy's car gets n miles per gallon of gas. If she travels x miles, how many gallons of gas did she use? x miles / n gmiles = [B]x / n gallons of gas[/B]
On a particular road map, 1/2 inch represents 18 miles. About how many miles apart are 2 towns that
On a particular road map, 1/2 inch represents 18 miles. About how many miles apart are 2 towns that are 2 1/2 inches apart on this map? A) 18 B) 22 1/2 C) 36 D) 45 E) 90 Set up a proportion of inches to miles where m is the number of miles for 2 1/2 inches. Note: 1/2 = 0.5 and 2 1/2 = 2.5 0.5/18 = 2.5/m [URL=' this proportion into the search engine[/URL], we get: [B]m = 90 Answer E[/B]
On her 10 mile trip to school, Jessica's car gets 50 mpg of gas. On her way home, her car gets 40 mi
On her 10 mile trip to school, Jessica's car gets 50 mpg of gas. On her way home, her car gets 40 miles per gallon. How many miles per gallon does Jessica's car get during the entire 20 mile trip? 50 miles each gallon for a 10 mile drive = 1/5 gallon 40 miles each gallon for a 10 mile drive = 1/4 gallon [URL=' + 1/5[/URL] = 9/20 20 miles driven /9/20 gallon = 400/9 = [B]44.44 miles per gallon[/B]
please answer this word problem
Two trains leave the station at the same time, one heading east and the other west. The eastbound train travels at 105 miles per hour. The westbound train travels at 85 miles per hour. How long will it take for the two trains to be 494 miles apart?
porportion problems
Im not really good with proportion and rates word problems and I need some help with it in my homework If Leah walks 5 miles in 60 minutes, then Leah will walk how far in 110 minutes if she walks at the same speed the whole time? If necessary, round your answer to the nearest tenth of a mile. I wanna know how i get this answer and copy the formula. Please help me thank you.
porportion problems
Set up a proportion of miles to minutes where m is the number of miles walked in 110 minutes: 5/60 = m/110 Use our [URL=' calculator[/URL], we get: [B]m = 9.1667 miles[/B]
Rachel runs 2 miles during each track practice. Write an equation that shows the relationship betwe
Rachel runs 2 miles during each track practice. Write an equation that shows the relationship between the practices p and the distance d. Distance equals rate * practicdes, so we have: [B]d = 2p[/B]
Roberto owns a trucking company. He charges $50 hook up fee and $2 per mile. How much to tow your ca
Roberto owns a trucking company. He charges $50 hook up fee and $2 per mile. How much to tow your car: 1mile , 2miles , 10miles ? The Cost Function C(m) where m is the number of miles is written as: C(m) = 2m + 50 The problem asks for C(1), C(2), and C(10) Calculate C(1) C(1) = 2(1) + 50 C(1) = 2 + 50 C(1) = [B]52[/B] Calculate C(2) C(2) = 2(2) + 50 C(2) = 4 + 50 C(2) = [B]54[/B] Calculate C(10) C(10) = 2(10) + 50 C(10) = 20 + 50 C(10) = [B]70[/B]
Sara bought a gas-electric hybrid car. She traveled 481.25 miles and used 9.625 gallons of gas. How
Sara bought a gas-electric hybrid car. She traveled 481.25 miles and used 9.625 gallons of gas. How many miles did the hybrid car travel for each gallon of gas? 481.25/9.625 = [B]50 miles per gallon[/B]
Scott and Dylan both leave the park at the same time, but in opposite directions. If Scott travels 1
Scott and Dylan both leave the park at the same time, but in opposite directions. If Scott travels 12 mph and Dylan travels 19 mph, how long until they are 186 miles apart? Hour 1, they are 19 + 12 = 31 miles apart. So each hour, they get 31 miles more apart. When they are [URL=' miles apart[/URL], we divide this by 31 miles apart per hour: 186/31 = [B]6 hours[/B]
Sound takes 5 seconds to go one mile. Clark is standing near a rock wall and when he shouts, it take
Sound takes 5 seconds to go one mile. Clark is standing near a rock wall and when he shouts, it takes 20 seconds for the echo to reach his ears. How far away is the rock wall? The sound makes a round trip from Clark to the wall back to Clark. 20 seconds / 5 seconds per mile = 4 miles 4 miles / 2 for round trip = [B]2 miles[/B]
Stopping-Braking Distance for a Car
Free Stopping-Braking Distance for a Car Calculator - Calculates the estimated stopping distance of a vehicle given a speed in miles per hour (mph)
Stuart traveled n miles at a speed of 72 miles per hour. How many seconds did it take Stuart to trav
Stuart traveled n miles at a speed of 72 miles per hour. How many seconds did it take Stuart to travel the n miles? Distance = Rate * Time Time = Distance/Rate Time = n/72 hours 3600 seconds per hour so we have: 3600n/72 [B]50n[/B]
The area of a desert in Africa is 12 times the area of a desert in Asia. If the area of a desert in
The area of a desert in Africa is 12 times the area of a desert in Asia. If the area of a desert in Asia is Y square miles, express the area of a desert in Africa as an algebraic expression in Y. [B]Africa Area = 12Y[/B]
The cost of a taxi ride is $1.2 for the first mile and $0.85 for each additional mile or part thereo
The cost of a taxi ride is $1.2 for the first mile and $0.85 for each additional mile or part thereof. Find the maximum distance we can ride if we have $20.75. We set up the cost function C(m) where m is the number of miles: C(m) = Cost per mile after first mile * m + Cost of first mile C(m) = 0.8(m - 1) + 1.2 C(m) = 0.8m - 0.8 + 1.2 C(m) = 0.8m - 0.4 We want to know m when C(m) = 20.75 0.8m - 0.4 = 20.75 [URL=' this equation into our math engine[/URL], we get: m = 26.4375 The maximum distance we can ride in full miles is [B]26 miles[/B]
The distance traveled in t hours by a car traveling at 65 miles per hour
The distance traveled in t hours by a car traveling at 65 miles per hour. Distance = Rate * Time Distance = 65 mph * t hours Distance = [B]65t[/B]
The moon's diameter is 2,159 miles. What is the surface area of the moon? Round to the nearest mile.
The moon's diameter is 2,159 miles. What is the surface area of the moon? Round to the nearest mile. The moon is a sphere. So our Surface Area formula is: S =4pir^2 If diameter is 2,159, then radius is 2,159/2 = 1079.5. Plug this into the Surface Area of a sphere formula: S = 4 * pi * 1079.5^2 S = 4 * pi *1165320.25 S = 4661281 pi S = [B]14,643,846.15 square miles[/B]
The scale of a map shows that 1/2 inch is equal to 3/4 of a mile. How many inches on a map would be
The scale of a map shows that 1/2 inch is equal to 3/4 of a mile. How many inches on a map would be equal to 3 miles? Set up a proportion of scale to actual distance 1/2 / 3/4 = x/3 4/3 = x/3 Cross multiply: 3x = 12 Divide each side by 3: 3x/3 = 12/3 x = [B]4 (1/2 inch sections) or 2 inches[/B]
The scale on a map is 1 inch = 60 miles. If two cities are 75 miles apart, how far apart are they on
The scale on a map is 1 inch = 60 miles. If two cities are 75 miles apart, how far apart are they on the map? Set up a proportion of inches to miles where n is the number of inches for 75 miles 1 inch/60 miles = n/75 Using our [URL=' calculator[/URL], we get: n = [B]1.25 inches[/B]
The sound from a thunderstorm travels approximately 1/5 of a mile in one second. How far will the so
The sound from a thunderstorm travels approximately 1/5 of a mile in one second. How far will the sound travel in 18.6 seconds? 1/5 mile per second * 18.6 seconds = [B]3.72 miles[/B]
Time and Distance
charlie leaves home going 40 miles per hour. When charlie is 9 miles from home, Danny starts after charlie from the same place, going 55 miles per hour. How long does it take Danny to catch up charlie?
William is traveling at a speed of 50 miles per hour. How far will William travel in n hours?
William is traveling at a speed of 50 miles per hour. How far will William travel in n hours? 50 miles per hour * n hour = [B]50n[/B] miles
Wind Chill Factor
Free Wind Chill Factor Calculator - This calculator determines the wind chill factor given a temperature in F° and a wind speed in miles per hour (mph). Simply enter your temperature and wind speed and press the button
You fly x miles and then drive y miles. How many miles did you travel?
You fly x miles and then drive y miles. How many miles did you travel? Total miles traveled = fly miles + drive miles Total miles traveled = [B]x + y[/B]